The Moonshine Module for Conway's Group

John Duncan and Sander Mack-Crane* Case Western Reserve University

Joint Mathematics Meetings, San Antonio 12 January 2015

S. Mack-Crane The Moonshine Module for Conway's Group

Moonshine is a series of connections modular functions <-----> representation theory of finite groups

Moonshine has been discovered for the monster group \mathbb{M} , Conway's group Co_0 , the Mathieu groups M_{24} and M_{12} , ...

We'll focus on moonshine for Conway's group.

Conway's group Co_0 is the automorphism group of a 24-dimensional lattice known as the Leech lattice.

 Co_0 has $8\,315\,553\,613\,086\,720\,000$ elements, and 167 irreducible representations of dimension

1, 24, 276, 299, 1771, 2024, 2576, 4576, 8855,....

The upper half plane

$$\mathbb{H} = \{\tau \in \mathbb{C} : \mathsf{Im}(\tau) > 0\}$$

can realize a model of the hyperbolic plane, and the group of orientation-preserving isometries is SL₂ \mathbb{R} acting by linear fractional transformations.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \tau = \frac{a\tau + b}{c\tau + d}$$

The upper half plane

$$\mathbb{H} = \{\tau \in \mathbb{C} : \mathsf{Im}(\tau) > 0\}$$

can realize a model of the hyperbolic plane, and the group of orientation-preserving isometries is $SL_2 \mathbb{R}$ acting by linear fractional transformations.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \tau = \frac{a\tau + b}{c\tau + d}$$

Given a discrete group $\Gamma < SL_2 \, \mathbb{R},$ we can form the orbit space $\Gamma \backslash \mathbb{H}.$

Then add finitely many points to obtain a compact surface $\Gamma \backslash \mathbb{H}^*.$

For $\Gamma < SL_2 \mathbb{R}$ a discrete subgroup, a *modular function* for Γ is a meromorphic function $\Gamma \setminus \mathbb{H}^* \to \mathbb{C}$.

The set of modular functions on Γ forms a field, and this field is generated by a single element exactly when the genus of $\Gamma \setminus \mathbb{H}^*$ is 0 (in this case the group Γ is said to have *genus* 0).

A generator is called a *principal modulus* (or Haputmodul) for Γ .

Equivalently, a *modular function* for $\Gamma < SL_2 \mathbb{R}$ is a meromorphic function $f : \mathbb{H} \to \mathbb{C}$ satisfying

$$f\left(rac{a au+b}{c au+d}
ight)=f(au) ext{ for all } egin{pmatrix} a&b\\c&d \end{pmatrix}\in {\sf \Gamma}.$$

э

Equivalently, a modular function for $\Gamma < SL_2 \mathbb{R}$ is a meromorphic function $f : \mathbb{H} \to \mathbb{C}$ satisfying

$$f\left(rac{a au+b}{c au+d}
ight)=f(au) ext{ for all } egin{pmatrix} a&b\\c&d \end{pmatrix}\in \Gamma.$$

If
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \Gamma$$
, then $f(\tau + 1) = f(\tau)$ and $f(\tau) = \sum_{n \ge -N} a_n q^n \qquad (q = e^{2\pi i \tau}).$

Principal moduli are not unique, but there is a unique *normalized* principal modulus for Γ with Fourier expansion $q^{-1} + 0 + O(q)$.

Example: the group $\Gamma_0(2) < SL_2 \mathbb{R}$ consists of integer matrices of determinant 1 which are upper triangular mod 2.

$$\Gamma_0(2) = \left\{ \begin{pmatrix} a & b \\ 2c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, ad - 2bc = 1 \right\}$$

 $\Gamma_0(2)$ is a genus 0 group, and its normalized principal modulus is

$$f(\tau) = q^{-1} - 0 + 276q - 2048q^2 + 11202q^3 - \cdots$$

Representations of Co_0 :

1, 24, 276, 299, 1771, 2024, 2576, 4576, 8855,...

Normalized principal modulus for $\Gamma_0(2)$:

$$f(\tau) = q^{-1} - 0 + 276q - 2048q^2 + 11202q^3 - \cdots$$

Observation:

$$1 = 1$$

$$276 = 276$$

$$2048 = 2024 + 24$$

$$11202 = 8855 + 2024 + 299 + 24$$

$$\vdots$$

Moonshine

Conjecture

There is a graded representation

$$V = \bigoplus_{i \ge -1} V_i$$

of Co_0 such that

$$\dim V = \sum_{i \ge -1} \dim V_i q^i$$

is the normalized principal modulus of $\Gamma_0(2)$.

Moonshine

Conjecture

There is a graded representation

$$V = \bigoplus_{i \ge -1} V_i$$

of Co_0 such that

$$\operatorname{tr}_V g = \sum_{i \ge -1} \operatorname{tr}_{V_i} g q^i$$

is the normalized principal modulus of a genus 0 subgroup of $SL_2 \mathbb{R}$ for all $g \in Co_0$.

1. Let $\mathfrak{a}=\Lambda\otimes_{\mathbb{Z}}\mathbb{C}$ be a complex vector space enveloping the Leech lattice.

э

1. Let $\mathfrak{a}=\Lambda\otimes_{\mathbb{Z}}\mathbb{C}$ be a complex vector space enveloping the Leech lattice.

2. Construct the Clifford module vertex algebra

$$A(\mathfrak{a}) = A(\mathfrak{a})^0 \oplus A(\mathfrak{a})^1.$$

1. Let $\mathfrak{a}=\Lambda\otimes_{\mathbb{Z}}\mathbb{C}$ be a complex vector space enveloping the Leech lattice.

2. Construct the Clifford module vertex algebra

$$A(\mathfrak{a}) = A(\mathfrak{a})^0 \oplus A(\mathfrak{a})^1.$$

3. In a similar way, construct the twisted vertex algebra module

$$A(\mathfrak{a})_{\mathrm{tw}} = A(\mathfrak{a})^0_{\mathrm{tw}} \oplus A(\mathfrak{a})^1_{\mathrm{tw}}.$$

1. Let $\mathfrak{a}=\Lambda\otimes_{\mathbb{Z}}\mathbb{C}$ be a complex vector space enveloping the Leech lattice.

2. Construct the Clifford module vertex algebra

$$A(\mathfrak{a}) = A(\mathfrak{a})^0 \oplus A(\mathfrak{a})^1.$$

3. In a similar way, construct the twisted vertex algebra module

$$A(\mathfrak{a})_{\mathrm{tw}} = A(\mathfrak{a})^0_{\mathrm{tw}} \oplus A(\mathfrak{a})^1_{\mathrm{tw}}.$$

4. Set

$$V^{s\natural} = A(\mathfrak{a})^0 \oplus A(\mathfrak{a})^1_{\mathrm{tw}}.$$

This is a graded representation of Co_0 .

Theorem (Duncan and M-C)

For all $g \in Co_0$,

$$\operatorname{tr}_{V^{\operatorname{s}
atural}} g = \sum_{i \geq -1} \operatorname{tr}_{V^{\operatorname{s}
atural}_i} g \ q^i$$

is the normalized principal modulus of a genus 0 subgroup of $SL_2 \mathbb{R}$.

- ₹ 🖬 🕨

э

Physics

The vertex algebra $V^{s\natural} = A(\mathfrak{a})^0 \oplus A(\mathfrak{a})^1_{\mathrm{tw}}$ has a canonical vertex algebra module

$$V^{\mathfrak{s}
atural}_{\mathrm{tw}}=A(\mathfrak{a})^0_{\mathrm{tw}}\oplus A(\mathfrak{a})^1,$$

which is also a representation of Co_0 .

We can introduce a bigrading

$$V^{sarphi}_{ ext{tw}} = igoplus_{i,j} V^{sarphi}_{ ext{tw},ij}$$

and the graded traces

$${
m tr}_{V^{{
m s}
atural}_{
m tw}}g=\sum_{i,j}{
m tr}_{V^{{
m s}
atural}_{
m tw},ij}g\,q^iy^j$$

for $g \in Co_0$ (fixing a 4-dimensional sublattice in their action on the Leech lattice) are twined elliptic genera of non-linear sigma models on K3 surfaces.